4 (a) Lactose is a sugar found in milk. It is digested by an enzyme called lactase. Some people cannot make lactase. The condition they have is called lactose intolerance.

The condition is caused by a recessive allele. This means that only people with the homozygous recessive genotype can be lactose intolerant.

(i) What is meant by the term **homozygous**?

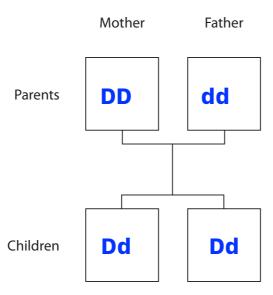
(1)

they inherited the same allele from both parents

(ii) State the two possible genotypes of an individual who is **not** lactose intolerant.

Use the symbols **D** for the dominant allele and **d** for the recessive allele.

(2)


DD

₂ Dd

(b) (i) A homozygous dominant mother and a homozygous recessive father have two children.

In the boxes below give the genotypes of the parents and their children.

(2)

(ii) What is the probability that the children are lactose intolerant?

(1)

(c) People from different countries were tested to find out if they were lactose intolerant. The table shows the number of people who were tested in each country and the percentage who were lactose intolerant.

Country	Number of people tested	Percentage who were lactose intolerant
А	160	4
В	315	12
С	134	18
D	20	75
Е	59	89
F	71	93
G	134	98
Н	24	100

(i) The population size of country B is 190 million.

Calculate the number of people in this country likely to be lactose intolerant. Show your working.

(2)

190,000,000 x (12/100) = 22800000

Answer	
VIIZMEI	

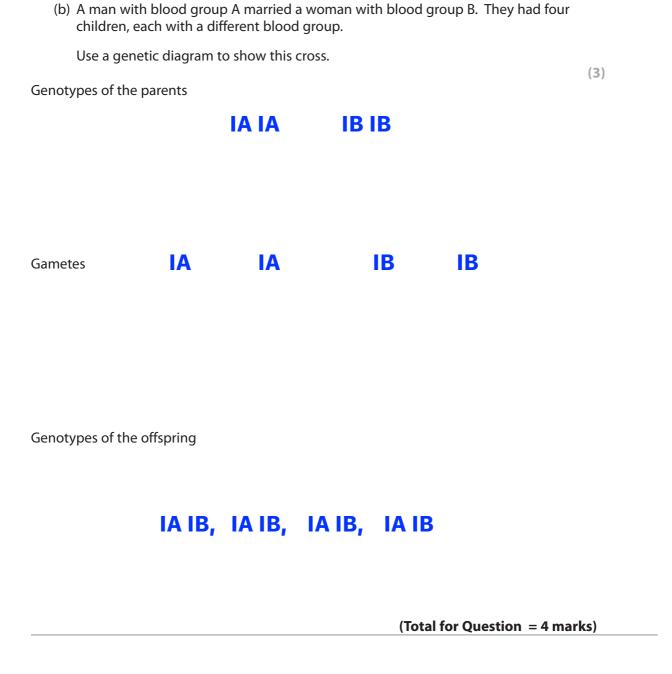
(ii) Suggest a reason why the value of 100% for country H may not be correct.

(1)

only a small number of people were tested.

(Total for Question = 9 marks)

5 Human blood group is an example of a phenotype determined by alleles that show codominance.


The table shows the different blood groups and their genotypes.

Blood group	Genotypes		
А	I ^A I ^A or I ^A I ^O		
В	IB IB Or IB IO		
AB	I _V I _B		
0	lo lo		

(a) Explain what is meant by the term **codominance**.

(1)

The phenotypes of both alleles are expressed.

1	Mendel crossed together pure breeding pea plants with purple flowers and pure breeding pea plants with white flowers. The offspring plants all had purple flowers.						
	(a) Explain which phenotype is dominant. (2)						
	Purple is the dominant phenotype because all the						
	offspring had purple flowers even though they						
	inherited the white and purple alleles.						
	(b) In a second cross, the purple offspring plants were self-pollinated (pollen from a flower put on the stigma of the same flower).						
	Suggest how Mendel made sure that all the purple offspring plants were self-pollinated.						
	(2)						
	eeping them in an enclosed, air tight tank to prevent ollen from other plants reaching them.						

(c) (i)	Use a genetic di purple offspring			tio of plants	expe	ected by cr	ossing the	
	Show the parent phenotypes. Us				he of	fspring ge	notypes and	(4)
Parent ger	notypes		Ff.	Ff				
Gametes		F	f	F	f			
Offspring	genotypes	FF	fF	Ff		ff		
Offspring	phenotypes	Purp	ole, pur	ole, pu	rpl	e, whi	te	
(ii)	The plants actua	ılly prodı	uced in this c	ross were 36	5 purp	ole and 8 w	/hite	
	Calculate the rat	io of pur	ple to white	flowered pla	ants.			(1)
			36:8 =	4.5: 1	ı			
						Ansv	ver	
(iii)	Suggest why the your genetic dia		ratio of pheno	otypes differ	rs fror	m the one	predicted by	
The	genetic d	iagra	am only	shows	s th	ie		(2)
probability of the phenotypes. It is								
possible by chance to end up with more								
or fewer of each phenotype, therefore the actual ratio can differ from the								
	licted rat		ii uiiiei	HUIII	LIIE			
la. 00		•						

(d) A student suggested that purple flowers are more likely to be visited by bees than white flowers.

Use your knowledge of natural selection to suggest how this might affect the number of purple and white flowers in the wild.

(5)

 If purple flowers are more likely to be
visited by bees then purple flowers' pollen
 will be spread to other flowers more
 frequently than white flowers' pollen. This
 means purple flowers will be more
successful at propagating their genes and
 reproducing and the proportion of purple
 flowers will increase over time as they
 out-compete white flowers for access to
 bees. The proportion of white flowers will
decrease.
(Total for Question = 16 marks)